

West of England

Key challenges to decarbonisation of heat

26th November 2019

COPYRIGHT © 1976-2019 BUROHAPPOLD ENGINEERING. ALL RIGHTS RESERVED

The challenge: UK energy demand

UK Energy Usage 2011

UK heat and electricity demand variability

Source: DECC The Future of Heating: Meeting the Challenge & Imperial College

Source: Sansom (2010)

The challenge: heat in the West of England

WoE energy related carbon emissions by application (2015)

Electricity: non-domestic Electricity: domestic Heat: non-domestic Mobility: non-domestic Mobility: non-domestic Mobility: non-domestic Electricity: non-domestic Non-domestic Electricity: non-domestic Non-dom

Source: Towards A Sustainable Energy Future for the West of England (CSE 2018)

Emissions in the West of England

 Decrease in emissions over period from 2005-2017, driven by reduction in industrial emissions

Source: National Atmospheric Emissions Inventory

Emissions in the West of England

 Latest reporting period, domestic gas accounts for 18% of emissions

- A. Industry and Commercial Electricity
- B. Industry and Commercial Gas
- C. Large Industrial Installations
- D. Industrial and Commercial Other Fuels
- E. Agriculture
- F. Domestic Electricity
- G. Domestic Gas
- H. Domestic 'Other Fuels'
- I. Road Transport (A roads)
- J. Road Transport (Motorways)
- K. Road Transport (Minor roads)
- L. Diesel Railways
- M. Transport Other
- N. LULUCF Net Emissions

Source: National Atmospheric Emissions Inventory

The impact of grid decarbonisation on heating technologies

Use BEIS emissions scenarios

SPATIAL

PERFORMANCE OF BUILDINGS

West of England

EPCs (domestic)

- 326,000 domestic EPCs in West of England available from MHCLG
- EPC band D or below:
 - 67% of houses
 - 47% of flats
 - 59% of all properties

Source: MHCLG Energy Performance of Buildings Data

EPCs (non-domestic)

- 15,700 domestic EPCs available from MHCLG
- EPC band D or below:
 - 64% of all properties

Source: MHCLG Energy Performance of Buildings Data

Skills and jobs All houses refurbished

- To retrofit all homes in WoE by 2030
- Peak of 20,000 workers required (40% of 2008 employment figures for construction)
- Peak of 250 retrofits completed a day
- Peak growth in workers of 150% per year

ZERO WEST SCENARIO FINDING

Scenarios

- Range of scenarios tested
 - Achievable
 - Ambitious
 - Maximum
- Assumes share of wider UK hydro and offshore wind apportioned by population is accounted for in WoE energy mix

Source: Zero West

Renewable Energy Planning Database

260 MW operational schemes in West of England

- 59% solar photovoltaics
- 14% offshore wind
- 12% EfW incineration
- Further 93MW under construction or awaiting construction

Source: BEIS REPD, October 2019

Renewable Energy Planning Database

260 MW operational schemes in West of England

- 59% solar photovoltaics
- 14% offshore wind
- 12% EfW incineration

Operational

Source: BEIS REPD, October 2019

Renewable Energy Planning Database

260 MW operational schemes in West of England

- 59% solar photovoltaics
- 14% offshore wind
- 12% EfW incineration
- Further 93MW under construction or awaiting construction, including:
 - 28MW battery
 - 23MW advanced conversion technologies

Operational Awaiting Construction Under Construction

Source: BEIS REPD, October 2019

Feed in Tariff Installations

- Cumulative total capacity confirmed on the Central Feed-in Tariff Register as at end March 2019
 - 115 MW total

Domestic Non-domestic

Source: BEIS sub-regional Feed-in Tariffs statistics, October 2019

Scenarios

- Range of scenarios tested
 - Achievable
 - Ambitious
 - Maximum
- Assumes share of wider UK hydro and offshore wind apportioned by population is accounted for in WoE energy mix

Capacity (MW)	South Gloucestershire	City of Bristol	B&NES	North Somerset	New	Existing
Solar PV (roof)	137	260	108	125	631	101
Solar PV (ground)	248	55	176	187	666	188
Hydro	0	1	4	0	5	0
Onshore Wind	167	0	114	132	412	65
Biomass	16	0	10	11	37	0
EfW	12	17	9	10	49	102
AD						17

Source: Zero West

Scenarios

- Solar: greatest potential, limited by interseasonal storage
- Onshore wind: vital contribution (not only day)
- Hydro: tiny contribution (less than national average)
- Biomass: with existing land use, significantly more potential from energy crops than forestry (although energy density lower)
- EfW: WoE imports waste

Capacity (MW)	South Gloucestershire	City of Bristol	B&NES	North Somerset	New	Existing
Solar PV (roof)	137	260	108	125	631	101
Solar PV (ground)	248	55	176	187	666	188
Hydro	0	1	4	0	5	0
Onshore Wind	167	0	114	132	412	65
Biomass	16	0	10	11	37	0
EfW	12	17	9	10	49	102
AD						17

Source: Zero West

West of England

Scenarios

- Range of scenarios tested
 - Achievable
 - Ambitious
 - Maximum
- Solar:
 - 0.5% land area in Ambitious scenario for ground mounted PV (6.7km²)

Capacity (MW)	South Gloucestershire	City of Bristol	B&NES	North Somerset	New	Existing
Solar PV (roof)	137	260	108	125	631	101
Solar PV (ground)	248	55	176	187	666	188
Hydro	0	1	4	0	5	0
Onshore Wind	167	0	114	132	412	65
Biomass	16	0	10	11	37	0
EfW	12	17	9	10	49	102
AD						17

Source: Zero West

Land use

- Agricultural land class in West of England
 - 82% of land classified as agricultural, 1083 km²
 - 25% of agricultural land is Grade 4 and 5 (119km²), indicating areas of poorer quality land potentially suitable for large-scale renewables deployment

Source: Natural England Provisional Agricultural Land Classification

West of England

Solar

Renewable site opportunities Source: Natural England Provisional Agricultural Land Classification, Western Power Distribution, National Grid, BEIS Renewable Energy Planning Database, October 2019

West of England

Solar

Scenarios

- Range of scenarios tested
 - Achievable
 - Ambitious
 - Maximum
- Wind:
 - 2.8% land area in Ambitious scenario for wind (45.8km²)

Capacity (MW)	South Gloucestershire	City of Bristol	B&NES	North Somerset	New	Existing
Solar PV (roof)	137	260	108	125	631	101
Solar PV (ground)	248	55	176	187	666	188
Hydro	0	1	4	0	5	0
Onshore Wind	167	0	114	132	412	65
Biomass	16	0	10	11	37	0
EfW	12	17	9	10	49	102
AD						17

Source: Zero West

West of England

Wind

Scenarios

- Range of scenarios tested
 - Achievable
 - Ambitious
 - Maximum
- Biomass:
 - 190km² energy crops

Capacity (MW)	South Gloucestershire	City of Bristol	B&NES	North Somerset	New	Existing
Solar PV (roof)	137	260	108	125	631	101
Solar PV (ground)	248	55	176	187	666	188
Hydro	0	1	4	0	5	0
Onshore Wind	167	0	114	132	412	65
Biomass	16	0	10	11	37	0
EfW	12	17	9	10	49	102
AD						17

MATCHING HEAT SUPPLY AND DEMAND IN WEST OF ENGLAND

Pathfinder model

- No fossil fuels or nuclear
- Reduce demand by 30%
- Renewables:

BUROHAPPOLD

FNGTNFFRTNG

- Ambitious scenario for local solar and wind
- Added share of offshore wind and national hydro projects
- Biomass: current EfW, no biomass
- One electric car per household (current figure 1.4 cars/household)
- Interconnector supplies missing energy
- Heat pumps, EVs, hydrogen and batteries use excess generation

- Minimal hours of blackout
- Minimal unused electricity
- Greatest reduction in fossil gas consumption
- Greatest reduction in CO₂ emissions
- Least dependence on interconnector, which could represent:
 - Residual gas
 - Nuclear fission
 - Generation from hydrogen
 - Generation from green/synthetic gas
 - Tidal
 - Imported energy

Baseline energy demand

Source: WWU Pathfinder Model/Zero West

Future energy demand

Source: WWU Pathfinder Model/Zero West Scenario

Profile of generation

Source: WWU Pathfinder Model/Zero West Scenario

Supply and demand

All heat electrified

Annual generation: 5,200 GWh Annual demand: 5,000 GWh

Source: WWU Pathfinder Model/Zero West Scenario

Supply and demand

All heat electrified

Please get in touch...

We'd love to hear from you

Lara Balazs lara.balazs@burohappold.com

www.burohappold.com

COPYRIGHT © 1976-2019 BUROHAPPOLD ENGINEERING. ALL RIGHTS RESERVED